T THE REAL PRODUCTION AND A DESCRIPTION OF A

Seat No.

HAL-003-1163003

M. Sc. (Sem. III) (CBCS) Examination June – 2023

Mathematics

(Number Theory 1)

Faculty Code : 003 Subject Code : 1163003

Time : $2\frac{1}{2}$ Hours / Total Marks : 70

Instructions :

- (1) There are five questions.
- (2) All questions are compulsory.
- (3) Each question carries 14 marks.
- 1 Do as directed : (Answer any seven) $7 \times 2 = 14$
 - (a) If we consider any integer a in modulo 3 system then show

that
$$\frac{a(a^2+3)}{3}$$
 is an integer.

- (b) Prove that g.c.d of any two integers is always positive.
- (c) Prove that $[ga, gb] = g \cdot [a, b]; \forall a, b \in \mathbb{Z} \{0\}, \text{ for } g > 0.$
- (d) Find the g.c.d of $(5a+2,7a+3); \forall a \in \mathbb{Z}$.
- (e) Define : (i) L.C.M. and (ii) Order of an element.
- (f) Define Reduced Residue System in modulo m with an example.
- (g) Define (i) Totally Multiplicative Function and (ii) Primitive Root.
- (h) Find all solutions of $3x \equiv 6 \pmod{9}$ if exists.
- (i) Find the number of solution of $x^2 \equiv -1 \pmod{11}$.
- (j) If a = 2m + 1, then show that $a^2 \cong 1 \pmod{8}$.

HAL-003-1163003]

[Contd...

$(p-1) \emptyset (p-1)$	prir

3 Answer the following :

- State and Prove Enclid's Algorithm. (a)
- State and Prove Chinese Remainder Theorem. (b)

Answer the following : 4 $2 \times 7 = 14$

- (a) St
- (b) (i 3 (i 4

Answe (a) S

- (b) State and prove Wilson's Theorem.
- Prove the every g.c.d. can be expressed as a linear (c) combination of given two integers a and b and vice-versa.

2

(d) Prove that $[a, b] \cdot (a, b) = |a, b|$ 5 (i)

(ii) If $a \mid c$ and $b \mid c$ with (a,b) = 1 then show that $ab \mid c$. 2

Answer any **two** of the following :

2

Prove that if order of $a \pmod{m}$ is h then for any integer (a)

$$j \ge 1$$
 order of $a^j \pmod{m} = \frac{h}{(h, j)}$.

(c) If $m, m_1, m_2 \ge 1$ with $1 = (m_1, m_2)$ and $m = m_1 \cdot m_2$ then prove that the number of solutions of $f(x) \cong 0 \pmod{m}$ is equal to the product of the number of solutions of $f(x) \cong 0 \pmod{m_1}$ and $f(x) \cong 0 \pmod{m_2}$.

3 Answer the following :

- State and Prove fundamental theorem of arithmetic. (a)
- Prove that if p is a prime number then p^2 has exactly (b) imitive roots in $(\mod p^2)$.

OR

HAL-003-1163003 |

5

 $2 \times 7 = 14$

 $2 \times 7 = 14$

 $2 \times 7 = 14$